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Scaling and local scale invariance for wetting transitions and 
confined interfaces 

A 0 Parry 
H H Wills Physics Laboratory, University of Bristol, Bristol BS8 ITL, UK 

Received 25 June 1991 

Abstract. We study the scaling behaviour of the magnetization profile m ( r )  ofan king-like 
magnet in a parallel-plate geometry with apposite ( h ,  = - h J  surface fields. In  the limit of 
large plate separation L (and zero bulk field) m ( z )  is a xaled function of z / L  for 
temperatures T, 4 T < T., where T, is the critical wetting temperature of each semi-infinite 
surface. The exact form of m ( i )  depends on whether T =  T,, Te> T >  T, or T =  Tc.  The 
influence of the far wall on the magnetization near one surface is long-ranged and is 
determined (far T <  TJ by wetting critical exponents. We show that the results of the 
capillary-wave model for a local one-paint function (probability distribution, energy 
density) may be derived by conformally mapping the corresponding quantity defined in 
the semi-infinite geometry at the appropriate wetting transition. We discuss the nature of 
local scale invariance far wetting transitions and speculate as to why conformal invariance 
has application to local one-point functions. 

1. Introduction 

The role that thermally excited capillary-wave-like fluctuations play in determining 
the nature of density profiles, response functions and two-body correlation functions 
in fluids (or king magnets) at interfaces has received considerable attention from 
theorists (for reviews see for example Fisher 1989, Evans 1990, Forgacs et a/ 1991). 
This is particularly true of the well studied problem of interfacial localization (say for 
a pure fluid below its critical temperature and at bulk saturation chemical potential 
p = psa , (T) )  in a weak gravitational external field Vex, = mgz. The width .fL of the 
interfacial density profile p ( z )  diverges as g + 0 (and dimension d 6 3 )  due to the 
growth of long-ranged Ornstein-Zernike-like correlations parallel to the interface. Such 
correlations have a characteristic transverse correlation length 5,) oc g-’” for all 
dimensions d. Studies of continuum effective interfacial (capillary-wave) Hamiltonians 
yield the well known ’capillary-wave’ results for the dependence of cl on ell: 

d < 3  r2 finite d > 3 .  
a d = 3  (1) 

The divergence ofti reflects directly the Ornstein-Zernike nature ofthe capillary-wave 
fluctuations (see the argument given by Parry 1989 and Evans 1991). This, again, is a 
direct reflection of the importance of fluctuations in interfacial phenomena. 

In the absence of random fields or random bonds equation (1) is believed to describe 
correctly the interfacial broadening which takes place at interfacial unbinding (wetting) 
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transitions where the divergence of (,, is sensitive to the dimensionality and type of 
intermolecular forces present. In recent articles (Parry 1991a, b) the author has argued 
that for d < d, (the upper critical dimension) the spatial dependence of the density 
profile (and local response and pair correlation functions) at continuous wetting 
transitions is also a function of z/l1. Here z measures the distance between the two 
interfaces that unbind from each other. Moreover we have shown that the density 
(magnetization) profile, local susceptibility and pair correlation function exhibit short- 
distance (i.e. Z K  &) algebraic decay which depends directly on the values of wetting 
critical exponents and hence (capillary-wave) fluctuation effects. 

In the present article we discuss the shape of the interfacial profile and local energy 
density for an interface confined in parallel plate geometry. Such a situation will arise 
when a fluid is confined between two parallel plates, a distance L apart say, one of 
which preferentially adsorbs the liquid phase while the other adsorbs the gas (Parry 
and Evans 1990a). The scaling properties of the density profile in such a geometry are 
discussed in section 3. Some of these results have been communicated earlier (Parry 
et a /  1991b). Calculations based on an effective Hamiltonian model of the 2~ system 
are presented in section 4. In section 5 we show that the results obtained in section 4 
for the local energy density (and magnetization profile) follow from applying the 
principle of local scale invariance to wetting transitions. We discuss why conformal 
transformations might have some application to wetting phenomena. A summary of 
our results and a discussion of the shape of confined interfacial profiles in 2 s d < 3 
is given in section 6. To begin we recall some details of critical effects at continuous 
wetting transitions. 

2. Critical effects at wetting transitions 

Consider a semi-infinite d-dimensional Ising model whose surface spins are subject 
to a local magnetic field h,  > 0. Suppose we impose a bulk field h < 0 so that spins far 
from the surface have a net negative magnetization. Then for subcritical temperatures 
one of two scenarios may be observed as h + 0-: (a) a layer of finite thickness I of 
upspins intrudes between the surface (located in the plane z = 0) and bulk spins. This 
corresponds to a situation of partial wetting; (b) a layer of infinite thickness of upspins 
forms at the surface corresponding to complete wetting. 

A critical wetting transition is said to occur if at h = 0- the thickness / diverges 
continuously as the temperature T (or, equivalently surface field h , )  approaches some 
wetting temperature T, (surface field h;)  from below. Such a transition is known to 
occur in the 2~ and 3~ Ising model (Abraham 1980, Binder et a1 1986, Parry et al 
1991a). The divergence of / is characterized by the critical exponent p .  

1- <-6 (2) 

where E = ( T, - T ) /  T, or <E 1 h ,  - h;l/ h;. The wetting transition may be viewed as 
the unbinding of the upspin-downspin ( # )  interface from the surface at z=O. For 
d c 3  the width of the interface diverges as /+m 

6,- E-".. (3)  

In d =3, CL diverges only if T >  TR, the roughening temperature of the system. As 
alluded to in the introduction, the divergence of is associated with the build-up of 
capillary-wave-like fluctuations at the TL interface. Since the transverse correlation 
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length 511 for such fluctuations diverges as ;+ 0 

tI1 - E-'ll (4) 

it follows from (1) that uI = [ ( 3 - d ) / 2 ] v I I .  At (and above) the transition temperature 
the excess free-energy per unit area uwi is the sum of the surface upspin (vwui) and ?J 
( U N )  contributions. This allows the identification of a 'specific heat' exponent a, for 
the transition. We write 

9 9 )  = Owl - (vw, + v,,) 

gAS I ET-".  

which has a singular contribution 

h=O 8+0.  ( 5 )  

The behaviour of 
a scaling equation 

for h < 0 should be described (Nakanishi and Fisher 1982) by 

= ;2-". F(I hl E-") (6) 

with A 2 -a,+& the gap exponent. Equations (2)-(6) are equally applicable to 
systems with long-ranged forces as are pertinent to the description of wetting at a 
wall-fluid interface. Mean-field analyses (see for example Dietnch 1988) have demon- 
siraied ihai a criiicai weiiing iransiiion is possibie in iiuid sysiems wiih long-ranged 
forces provided that the ranges of the (attractive) wall-fluid and fluid-fluid (van der 
Waals) potentials are the same. 

The values of the critical exponents for critical wetting are sensitive to the details 
ofthe forces present and to d, the dimensionality of space. Generally we must distinguish 
between three fluctuation regimes. For d > d, (the upper critical dimension) mean-field 
(MF) theory is valid. For d < d, we distinguish between a weak-fluctuation regime 
(WFR) and a strong fluctuation regime (SFR) where the latter corresponds to the case 
where all long-ranged forces are irrelevant. In the WFR the attractive part of the 
interfacial binding potential (see later), constitutes a relevant operator. Further details 
may be found in Lipowsky and Fisher (1987). 

For d s  d, ( < 3 )  scaling and exponent relations suggest that l -  cl so that the tJ 
interface broadens (delocalizes) and depins with the same critical exponent. Explicit 
calculation has confirmed this prediction for d = 2 except for an anomalous subregime 
at the WFR/SFR boundary (Lipowsky and Nieuwenhuizen 1988). In the light of this 
general observation we have proposed a scaling ansatz for the magnetization (or 
density) profile near a wetting transition (Parry 1991a, b) 

m ( z ) =  m,2(zEPs, hE-A)+msR(z) .  (7) 

The short-ranged contribution msn(z )  is expected to be small (away from the bulk 
critical temperature Tc) Vz  and vanish rapidly as z increases away from the wall. The 
scaling function 2 ( x ,  y )  is normalized so that 5 ( 0 , 0 )  = f l  and S(m, 0) = -1. m, is the 
bulk magnetization. Hereafter we work with the limit h = 0- only so that ma = m, 
( = - m - ) ,  The behaviour of the magnetization profile for 'short-distances' z<< E-@, from 
the surface may be determined using thermodynamic and universality arguments and 
depends upon ihe Buciuaiion regime describing ihe iraiiriiioii. in iiie SFR we expect 
(Parry 1991a) (ignoring mSR(z)) 

*;os<< 1 h = O -  (Sa) m ( z )  - -_  ; l -asZ(I-a,) lP9 

mo 
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while in the WFR (Parry 1991b) 

Away from T =  T, such short-distance expansions should be valid provided z >> a few 
lattice spacings. 

In d = 2 and in the absence of irrelevant operators it is easy to show using a 
capiiiary-wave iiamiitonian that ( i j  ana  ( S i  are obeyed exactiy in the SFR and WFR 
(Parry 1991a, b). The algebraic behaviour of m ( z )  in (Sa) and (86) is characterized 
by the short-distance expansion critical exponent 0 

-- n :. ..-: . I_ .I. .__ .__I L ~ ~ .  lnc  cxpvnent 0 1s un~versiil 111 mr JFK m u  wtK uut nmy be nun-universai ai ihe 
boundary between the fluctuation regimes (Parry 1991b). 

The above formalism is equally applicable to the complete wetting phase transition. 
This is the continuous phase transition from partial to complete wetting that occurs 
for Tc> T >  T, as h + O - ,  i.e. from off bulk-coexistence. We can define exponents 
analogous to equations ( 2 ) - ( 5 ) ,  i.e. 

/-/hJ-9: ( loa)  

t1- lh l -"~o (106) 

(10c) I1 I 1  
x:;A8 I Ih12-"?, ( 1 0 d )  

The field h always constitutes a relevant scaling field so there is no SFR for the 
complete wetting transition. For d < d:" (the upper critical dimension for complete 
wetting) the transition is described by the WFR and I - & .  The critical exponents are 
known exactly for this case (Lipowsky 1985): pc" = v:" = (d  + 1)/(3 - d )  and recall 
P:"=[(3-d)/2]vTand Z - m ~ = ( d - l ) I $ " .  We expect themagnetization profile to be 
described by a scaling equation analogous to (7): 

( i i )  

. .$ I h -"? 

, \  _?", 8 .  ,fie-\ m ( z j =  m,s--(zpl-* ) tm, , ( z )  

with a short-distance expansion near the wall 

with exponent (Parry 1991a) 

d + l  (I=- 
3-d  

Equations (11) and (12) have been verified in d = 2  using a capillary-wave model 
(Parry 1991a). 

3. Phase equilibria and magnetization profiles in the asymmetric slab 

We now consider a d-dimensional king magnet that is of infinite extent in (d - 1) 
dimensions but is of finite width L in the z-direction. Allow for local surface fields h, 
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(> 0) and h, which couple to the plane of spins at z = 0 and z = L respectively. Hereafter 
we consider the case of perfect asymmetry 

h ,  = -h2 

only. We will refer to this as the +- geometry and begin by recalling the details of 
the phase equilibria for such a system. 

We choose our surface layer spin coupling (surface enhancement) so that each 
semi-infinite surface (i.e. L =  00) undergoes a critical wetting transition as T +  T i  and 
h =O. Then, in the +- geometry, criticality (or pseudo-criticality) of the confined 
system is predicted to occur at some temperature Tc,L that is determined for large L 
by T, (Parry and Evans 1990a). For T < Tc,L two phases coexist at h = 0 and their 
magnetization profiles correspond to a film of upspins at one wall and a film of 
downspins at the other respectively. As T +  Tc,L the films grow in thickness and the 
difference in the excess magnetization diminishes and vanishes at T =  Tc.L. The associ- 
ated criticality is conjectured to belong to the ( d  - 1) dimensional king model univer- 
sality class. For T s  T, there is only one phase in the +- geometry VLt .  The presence 
of true symmetry breaking in the two semi-infinite geometries ( L = m )  leads to a very 
large correlation length (.$ - LZ””d’(d < 3) and ell - eL(d r 3 ) )  in the temperature 
range Tc> T >  T, (Parry and Evans 1990a,b). On the basis of finite-size scaling 
arguments it was argued that Tc,L is shifted below T, (for L + m )  by an amount 
determined by the wetting critical exponent p. 

T C . L  - T,E-L-’/P. L+CC (13) 

where the constant of proportionality may be temperature dependent. For wetting 
temperatures very close to the bulk-critical temperature T, the location of 
( T c - T C , J / T c  is, at least in MF theory, consistent with the scaling hypothesis (Parry 
and Evans 1991b, Swift et al 1991, Indeku et al 1991) 

i C.L =L-‘/”Y(h,L-A~/’) f-. (14) 

Here Y and A, are the bulk correlation length and surface critical gap exponents 
respectively. In the following we shall assume that h ,  is chosen so that T, is well below 
the bulk critical temperature T,. 

For Tc> T r  T, the magnetization profile ( V L  and h =0) resembles a TJ interface 
located at the centre z =  L / 2  of the slab. The precise shape of the profile m ( z ) ,  for 
asymptotically large L, depends on whether T = T, or T > T, reflecting the fluctuation 
effects in the SFR and WFR respectively. In order to see this consider the finite-size 
scaling of the surface excess free-energy Pes), regarding L as an extra scaling variable, 
For dimension d < 3 and short-ranged forces we consider a real space renormalization 
group transformation, in the vicinity of the critical wetting fixed point, which rescales 
the lattice anisotropically. If the scale factor is bll parallel to the wall then it is 
b, = bl;-d)/2 normal to the wall (Lipowsky and Fisher 1987). We expect that X‘” 
contains a singular piece which rescales in the standard way as a homogeneous function 

(15) X:y, (E,  h, L ) =  b ~ ( d - ” X & ( b ~ E ,  bph ,  L / b J  

with temperature and magnetic eigenvalues 

Y ,  = 11 VI1 Y h  = A/ YII 

t For dimension d = 3 we assume that 7, < T, so lhat specific latlice effects may be ignored (see Parry and 
Evans 1991a). 
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consistent with the scaling equation (6). Setting b,= L we find for T- T, 

X$La = L-'%( LEO,, hZ-A). (16) 
The exponent 7 = 2(d - 1)/(3 - d ) ,  which follows from making use of the hyperscaling 
relation 2-uS=(d-l)v, l  and ps=[ (3-d) /21vl j  (Parry and Evans 1990a). The argu- 
ments of the scaling function % are consistent with the shift (13). Differentiating (16) 
w.r.t. E yields the singular contribution to the surface layer magnetization. In particular 
for E = h = 0 we find (Parry et a/ 1991b) 

h=O T =  T,. (17) 
mli"g I L-."'p, 

I 

The result (17) may also he interpreted as the surface layer perturbation Am;'"a(L) = 
m,(L)  - m l ( m ) .  Am, (L)  measures the perturbation to the magnetization at one wall 
due to the finite size (i.e. presence of the other wall). In d = 2 this perturbation is 
particularly long-ranged. For d = 2 we have T = 2, & =  1 and so A m p 8 =  L-' which 
should he compared with the Fisher-deGennes result A m y a =  L-d valid exactly at 
hulk criticality T = T, and h = 0 (Au-Yang and Fisher 1980). Thus the critical wetting 
surface perturbation is longer-ranged in this dimension. Using the known numerical 
results for p, in d < 3 (Lipowsky and Fisher 1987) we conclude that the critical wetting 
perturbation (17) is longer-ranged than the Fisher-deGennes result V d  6 2.3. For d + 3- 
the exponent in (17) rapidly diverges to -CO, implying an exponentially small surface 
layer perturbation (i.e. short-ranged) in d = 3. 

The prediction for the surface layer perturbation 'can he generalized to distances z 
away from the walls. This amounts to a straightforward generalization of the scaling 
of the magnetization at critical wetting transitions reviewed in section 2. For +- 
boundary conditions we make the ansatz 

T S  T, (18) _-  m ( z )  - M(zEP', LEO.) 
mo 

valid asympotically for E + 0, h + 0 and L+ m. We have ignored any short-ranged 
contributions to m ( z ) .  Combining (18) and (17) we predict that exactly at T =  T, 
( h  = 0 )  m ( z )  is a function of the single variable z / L  with an algebraic decay 

close to one wall. This result should hold throughout the SFR. Note that since the 
non-universal metric factors of z i p ,  and LE'. in M are the same the critical amplitude 
ratio C, (d )  is universal in the SFR. 

Similarly for temperatures T,> T > T, we expect the surface layer perturbation 
Am, to he long-ranged at h = O  in the WFR reflecting the fact that m ( z )  is a (different) 
scaled function of z / L .  Using the same arguments as for critical wetting we expect 
that X.'" contains a singular scaling contribution for large L 

X:yig = L-T@'(Lh!?s) WFR (20) 

valid in the WFR; for short-ranged forces this implies d < 3. The argument of the scaling 
function represents the ratio of relevant length scales, I -  Ihl-'? and L / 2 ,  measured 
perpendicular to the walls. On the basis of (20) we expect that 

6 It - ~ 2 / . ' 3 - d ) h ' " ( h ' ) - d ) / ( d + l ) ~ )  d < 3  (21) 

for short-ranged forces, where we have used the result p:" = (3 - d ) / ( d  + 1) in the WFR. 
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To calculate A m , ( L )  we recall that in the WFR the singular contribution to the 
isothermal susceptibility ( a m , / a h ) ,  is finite (Parry 1991a, b). Therefore in the strip we 
expect a scaling form 

which implies the singular surface perturbation 

h = O  (23) 

for T,> T >  T, in systems with short-ranged forces in d < 3. The same result holds 
throughout the WFR. The perturbation is clearly long-ranged, although it is easy to 
show that it is not as long-ranged as the perturbation at the wetting temperature (17). 
The result (23) may be generalized to distances away from the wall by introducing an 
additional scaling variable Lh"-d'/'dt" into . the ansatz (11) for the profile at complete 
wetting. For h =0, m ( z )  is a scaled function of z / L  with 

A ~ ,  a ~ - [ ~ d + l l / O - d l l  

for short-distances z<< L. Again, the critical amplitude ratio C,(d) should be universal 
in the WFR ( d  < d:"). Equations (19) and (24) may be summarized by the algebraic law 

with the short-distance expansion exponent 0 taking its SFR value (Sa) and WFR value 
(8b) for T =  T, and Tc> T >  T, respectively. 

Implicit in the above analyses is the assumption that the effects of bulk criticality 
may be ignored. The short-distance expansions (8 ) ,  (9), (12a), (19) and (24) are valid 
for distances &,<< z<< L where ch is the bulk correlation length. Near bulk criticality 
the divergence of & implies a different short-distance expansion for distances a << z << fh 

where a is a lattice spacing. Clearly, exactly at T = T, the algebraic decay of m ( z )  (at 
a single wall) is completely determined by bulk critical fluctuations and wetting has 
no effect. The scaling of the  magnetization profile in the +- geometry at bulk criticality 
is a well known consequence of finite-size scaling (see e.g. Diebl 1986). In d = 2 
conformal invariance predicts the full form of m ( z )  in the +- geometry for distances 
z away from the wall (Burkhardt and Xue 1991) 

?TZ m ( z ) a [ i  sin:]-''* c o s y  T =  T, h = O  +- 
We shall return to the subject of conformal invariance in section 5 .  

4. Calculations of the magnetization profile and energy density in  models of the ZD 

+- strip 

To s!udy the mzgr?etlze!lon profile, !ore! energy density end corre!z!ion !e!?g!h l!? the 
d = 2  +- strip we use the well known continuum capillary-wave Hamiltonian 
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with U the g interfacial stiffness coefficient and U(1) the binding potential modelling 
the direct interaction between the unbinding interfaces. To model fluctuations in the 
strip for systems with short-ranged forces we choose 

IC0  I > L  
u(o= - U  O < I < R  L -  R < I < L  (26) i: otherwise 

with U > O ,  in the vicinity of T =  T,. For T >  T' we need not include an attractive 
potential well at each wall to model the asymptotic L+ a? behaviour. Rather we include 
a bulk field h to examine the scaling predictions (20)-(24) and write 

with h>O.  In order to solve (25) for general U(1) it is convenient to study the 
Schrodinger equation formulation of the path integral problem (for a discussion see 
e.g. Lipowsky 1985). Statistical averages may be written in terms of the eigenfunctions 
+" and eigenvalues E. of the equation 

with p = l / ( k B T ) .  In particular we can associate X'" with the ground state energy 

Z''' = Eo (29) 

and the correlation length with 

The magnetization profile is constructed in the usual solid-on-solid way by assuming 

regions of bulk upspin magnetization %= m, (for z < [(x) say) from regions of bulk 
downspin (for l ( x ) < z ) .  The probability of finding the interface (at position x along 
the wall) between 'heights' 1 ( x )  and I(x)+dl is 

P ( I ) d l = + i ( l ) d l  (31) 

thzt the grzph !(x), d.srri.bing the instan!aneous position of the Ti. in!erface, separates 

and is transiarionaiiy invariant in the x-direciion. T i e  magneiizaiion and energy density 
then follow as 

m ( z )  = m,( 1 - 2 \: d1) 

and 

E ( Z ) =  d ( Z )  (33) 

respectively. The energy density is clearly a local quantity. To proceed we consider 
the cases T- T, and T >  T, separately. 
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4.1. T-7 ,  

From Kroll and Lipowsky (1983) the wetting temperature for the model defined with 
the potential 

l < O  
O < l < R  
otherwise 

satisfies 

The ground-state energy Eo of the confined system is easily found by setting +o(0) = 
@o(L) = O  and matching & ( I )  and its derivatives at R* and ( L -  R)*.  The leading-order 
behaviour of Eo is 

where y is the dimensionless scaled variable 

L 
R 

y=c--2 

with i = ( p  - p,)/pw and c a pure number which is O( 1). The scaling function Go( y )  
satisfies the implicit equations 

y = -a t a n h m  y s o  (37) 

y = -+%tang- y>' .  (3s; 

Clearly the singular contribution to the free-energy E,  has the required scaling form 
(16); recall 7 = 2 and p, = 1 in d = 2. 

The scaling function Go is identical to that found in the restricted SOS model of 
the same problem (Privman and Svrakic 1988). Details of the higher eigenvalues E. 
may be found in that article. Exactly at the wetting temperature the eigenvalues satisfy 

n 2 r 2  
2&(L-2R)2 E. = n = 0, 1,2 (39) 

which implies that the ground-state energy is exactly zero at T = T,, i.e. the energy is 
precisely the same as a free (U([) = 0 V I )  interface. In addition at T = T,, the symmetric 
ground-state wavefunction is particularly simple 

Neglecting the variation of +o(l) close to the walls it follows that the interface wanders 
'freely' in the strip. The probability of finding the interface at a given height I is 
dependent of 1. For later purposes it is convenient to define a rescaled probability 
distribution 

p ( l )  = P ( l ) / P ( R )  (41) 
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so that in the present case 

P(/) = 1 T =  T, h = O  R < I <  L-R.  (42) 

The reason for introducing P( I )  is that this quantity exists for both critical and complete 
wetting transitions (at single walls L =  00) exactly at the transition temperature (and 
h = O ) ,  while P(I)  vanishes at finite I due to the normalization condition on $,,(/). 

Neglecting the variation of &(/) near the walls it follows from (31)-(33) and (40) 
that the profile m ( z )  and energy density & ( I )  satisfy 

m ( z ) - m ,  I-- ( 3 T =  T, h = O  (43) 

and 

E ( Z ) L X A  T = T ,  h=O (44) L 

respectively. Similarly the correlation length lIl exactly at the wetting temperature is 
from (30) and (39) 

where we have neglected tefms which are O ( R / L ) .  The magnetization profile (43) is 
clearly a scaled function of z / L ,  vindicating the scaling hypothesis (18). For short 
distances R < z << L 

m ( z ) - m a - - G  - 
mo L 

in agreement with the scaling prediction (19). The critical amplitude ratio C,(2) =2.  
Furthermore, simple perturbation theory demonstrates that this short-distance 
expansion is unaffected by including long-ranged irrelevant operators in the binding 
potential U( I). The amplitude is therefore universal in the SFR as expected. 

4.2. Tc> T> T, 

Provided lLil>> 1 the temperature (surface-field) dependence of U ( / )  may be neglected 
and the potential (27) suffices to study the large L behaviour of the model. We set 
2p2u= 1 for convenience. The wavefunctions $.(/) are simply Airy functions: 

where we have written E, = E,(h, L) to emphasize the field dependence of the eigen- 
values. 

From the boundary conditions &(O) = $ . ( L ) = O  it follows that 

Ai(-*:(h, L)) - Ai(h”’L- *:(h, L ) )  
Bi(-*:(h, L))-Bi(h”’L- *:(h, L)) (47) 

where 

E, = h2” *:(h, L )  
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and we have maintained the notation of equation (20). From (47) it follows that E. 
have the scaling form 

En = h2/'*:(h1/3L) (48) 

so that X") and tl, have precisely the conjectured scaling forms (see (20) and (21)). 
The scaling functions have the asymptotic behaviour 

- n 2 d  z2 
Wfp( 2 )  -*--- 22 2 + . . .  z + o  

where An are the zeros of the Airy function Ai. 
Exact!y at h = 0  the corrc!a!ion !eng!h is (reinserting the factor of 2fl2cr) 

(49) 

The cross-over in tI1 from its behaviour exactly at T =  T, (equation (45)) to equation 
(49) is described by a scaling function whose argument is LE (see Privman and Svrakic 
1988). Equation (49) is valid V T >  T, (fixed) in the limit L + W .  It follows that the 
ratio of .$ exactly at T, to its value for T 3  T, is universal in the limit L+m (h  = 0 )  

The ground-state wavefunction +o( I ) ,  exactly a t  h = 0, is 

so that the profile and energy density satisfy 

) h = O  

and 

respectively. The rescaled probability distribution is defined (cf 41) by - 
P i [ ) -  p ( j ) j p ( i )  i 54 j  

- L2 . %r/ 
P(I)=--;sin - h = O  T >  T,. ( 5 5 )  

where we assume that L >> 1. Clearly we have 

Tr L 

The magnetization profile (52) is clearly a function of the scaling variable ( z / L ) .  For 
z e  L we expand m ( z )  and find 
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in agreement with the scaling prediction (24). The critical amplitude ratio takes the 
universal value Cw(2) =47r2/3 throughout the WFR. This result may be established 
explicitly by considering the effect of irrelevant long-range operators in U ( / )  using 
elementary perturbation theory. 

5. Local scale invariance for wetting 

For a correlation function at bulk criticality measuring the expectation value of products 
of local operators much has been learnt from Polyakov’s (1970) suggestion that the 
scaling covariance of the correlation function is obeyed for spatially dependent rescaling 
factors b( r )  which locally preserve the lattice structure, i.e. angle preserving, conformal 
transformations. In d = 2 the conformal group is infinitely large and severely constrains 
the nature of criticality in this dimension. Alternatively, rather than exploiting confor- 
mal invariance as a symmetry, conformal mappings can be used to relate critical 
behaviour in different geometries (see for example the collected papers in Cardy 1988). 
A conformal mapping can be used, for example, to derive the magnetization profile 
in finite-width Ising strips (with a variety of boundary conditions) at T =  T, and h = 0 
from knowledge of the magnetization profile in the semi-infinite Ising model (Burkhardt 
and Xue 1991). 

In contrast, global scale invariance at a continuous wetting transition requires an 
essential anisotropic lattice rescaling. In d = 2  b , = q  (see section 3) so that the 
global transformation does not preserve angles. If one were to apply the principle of 
local scale invariance of local operators at  wetting transitions this anisotropy must be 
taken into account. Suppose, for example, that at T = T, and h = 0 (in the semi-infinite 
king model) we could define a two-point correlation function O ( z , ,  z,; R ) =  
/A(. ) , A ( - ~ \ \ - / A ( -  \ \ / A ( - ~ \ \  .xihare a is the para!!e! scpar&inn 9fthc pcin!g li \ Y \ * I , Y \ * I / ,  \ Y , * , , r \ Y \ - 2 , ! ,  ..*--.- 
and r,. Under a global rescaling we would expect 0 to transform according to 

with x,+ the scaling dimension of the local operator $. If we were to generalize (57) 
to exploit the expected local scale invariance of O ( z , ,  z , ;  R )  it is clear that a conformal 
transformation is inappropflate since the local rescaling must necessarily be b,( r )  = 
Jb,. The same applies to higher-point functions. 

For one-point functions at  wetting transitions, however, the situation is somewhat 
simpler. Under a global rescaling the one-point function p ( q )  = ($(I,)) transforms as 

so that a knowledge of bll is inessential. If we were to exploit the local scale invariance 
of p ( z , )  there may be some critical systems and dimensionalities where our choice of 
bll( r) is irrelevant provided that the transformed geometry is also translationally 
invariant in the parallel direction. If this were not the case then p would depend on 
a set of length scales (Rj) which would transform as (Rj/bll(r)}. Clearly if we are to 
avoid the enormous complication of taking into account the anisotropic nature of the 
rescaling we require that the geometries being mapped should exhibit translational 
invariance in d - 1 dimensions, With this proviso we are free to  use conformal mappings 
to exploit the local scale invariance of one-point functions at wetting transitions. Clearly 
the necessity of maintaining translational invariance is extremely restrictive in our 
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choice of conformal mapping. The most obvious choice, and the one pertinent to the 
present analysis, is the well known logarithmic mapping 

L 
w ( z )  =- In z 

7r 
(59) 

which maps the semi-infinite plane z = x + i y  ( y > O )  into the strip w = u + i u  (with 
O <  u < L ) .  In-context of the capillary wave model we choose the rescaled probability 
distribution P(I )  (see (41)) as a local operator. From (9),(32) and (58) we identify 
the exponent x+ = 0-  1. For short-ranged forces (k = 0) P ( / )  may be calculated for 
the SFR critical wetting and WFR complete wetting phase transitions (Parry 1991a). 
These correspond to temperatures T = T, and T >  T,  respectively. For the purpose 
of the mapping we write P(/) = P(x, y ) ,  meaning the (rescaled) probability of finding 
the interface (at x along the wall) at height y. The results for the semi-infinite plane 

P ( x ,  y)  = 1 T =  T, k = O  (60) 

P(X,Y) = Y 2  T,> T >  T, k = O .  (61) 
These results follow naturally from the short-distance expansion for d = 2 critical 
wetting (8a )  and complete wetting (12) respectively. Applying the logarithmic mapping 
(59) to (61) and (62) generates the rescaled probability P(u, U) in the +- strip: we find 

P(u,  U) = 1 T =  T, k = O  O < U < L  (62) 

(cz!co!.&ed E3icg !he capi!!arj.-*,a;,c -=de!) 8:: 

and 

and 

(63) 

which are in precise agreement with the explicit capillary-wave results (42) and (55). 
From (62) and (63) the energy-density and magnetization profile follow immediately. 
The present analysis is in the same spirit as that of Burkhardt and Eisenreigler (1985) 
who applied the mapping (59) to calculate m ( z )  at T =  T,, k = O  in the strip (with 
k, = k 2 )  from the algebraic decay law for the profile in the semi-infinite system: 
m(z) - z -@’ ’  (Fisher and deGennes 1978). 

Before ending this section we discuss the application of the mapping (59) to ZD 
wetting transitions which may be found in systems with long-ranged forces. We do 
not expect the mapping to be applicable to systems which belong to the M F  regime. 
This follows from noting that there is no short-distance expansion (since I >> in the 
MF fluctuation regime so that the simple homogeneous law (58) does not hold. In 
addition, the two results (62) and (63) may be regarded as pertinent to the SFR and 
WFR respectively in the absence of irrelevant operators (recall from (86) that 0 is 
universal in the WFR). This leaves us with the sm/wFR and MF/wFR intermediate 
fluctuation regimes (Lipowsky and Fisher 1987). These correspond (in d =2)  to the 
case where an algebraic tail 1-’ constitutes a marginal operator in the binding potential 
U ( [ )  (Kroll and Lipowsky 1983, Lipowsky and Nieuwenhuizen 1988). In order to sit 
exactly at T = T, (and k =0)  we need to specify the global nature of U ( / ) .  This is 
straightforward for the MF/wFR borderline. We simply specify that there is no relevant 
attractive short-ranged operator in U ( / ) ,  i.e. 

L’ , 7ru P(u, u)=-s1n2- Tc> T >  T, k=O O < u < L  
- I .  

/ < O  
/ > O  

T =  T, MF/WFR 
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with 0 a strength parameter 0 > 0. The short-distance expansion exponent e (and 
hence p ( I ) )  are known for this model (Parry 1991b). 0 is non-universal 

e = 2 + J i Z Z 3  (65 )  
so that 

T =  T, h=O. (66) 
sereafter we set ZrjP= i .  Appiying the coniormai mapping (jgj to (66j impiies that 

(67 )  

F ( I )  = p + d G i z s  

- + o ( r )  = (sin ? ~ I / L ) ~ I ~ ( ' + ~ I + ~ -  "I/ (L?r-1/2r( 1 + YixGr))l/* 
is the ground-state wavefunction for the strip potential 

I m  l < O  l > L  

otherwise. L2 sin' d/ L 

Note that we have applied the same mapping to the semi-infinite one-body binding 
potential. Substitution shows that (67 )  is indeed the exact ground-state wavefunction 
for the potential (68 )  with energy 

It is remarkable that the prediction of local scale invariance remains valid even in the 
presence of a long-ranged marginal operator. 

The situation at the sFR/wFR is more complicated. The details of the transition are 
highly sensitive to the short-ranged structure of U(1). Even in the simplest case where 
U ( [ )  has a purely repulsive contribution (at 1 = 1 say) the short-distance expansion 
for F ( I )  has logarithmic corrections (Parry 1991b) and the generalization of ( 5 8 )  for 
local scale transformations is problematic. This subject requires further research. 

6. Conclusion 

In the present article we have discussed the role that (capillary-wave-like) fluctuations 
play in determining the nature of magnetization profiles in parallel plate geometries 
with opposite surface fields. We have argued that such fluctuations lead to: 

(ij Scaling of the profile m ( z )  (and energy density). The profile is a scaled function 
of the variable z/L for T =  T, and Tc> T >  T, (h=O). 

(ii) Algebraic decay law for m ( z )  near a surface. As a consequence of this algebraic 
behaviour the surface perturbation Am,(L)  is long-ranged provided d is below the 
upper critical dimension of the wetting transition. For d s 2.3 the surface perturbation 
at T =  T, is larger than the Fisher-deGennes effect at T =  T,. 

( 5 )  Local scale invariance for systems with short-ranged forces. For one-point 
functions a logarithmic conformal mapping reproduces the strip (+-)geometry results 
in d = 2  for both T =  T, and Tc> T >  T,. 

for m ( z )  in the +- geometry. Here we concentrate on the predictions for a ZD system. 
The expansions (19) and (24) are specific to the SFR and WFR respectively. Thus, the 
same universal behaviour should be observed if a 'real' ZD fluid (or phase-separated 
binary mixture) with long-ranged dispersion foces were confined between parallel walls 

!! is impK!ant to recognize the ..lvers.! ".?"re of the shn!?-dir!ance expansion 
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that are wet by different phases. For practical purposes it is of course highly unlikely 
that a system may be found where each phase undergoes a wetting transition at exactly 
the same temperature. The universal result (19) with CJ2) = 2 (or rather its equivalent 
for a binary mixture) would therefore seem to be of academic interest only. The 
specifications for observing the scaling law (24) are, however, not nearly so restrictive. 
For instance we may forgo the requirement of perfect asymmetry. Rather we stipulate 
that the temperature be above the wetting temperature of each wall. That is, for a 
binary mixture say, we require that T >  TWA, 'TWB where .TWA is the temperature above 
which the A-rich phase wets the wall at z = O  (say) and TwB is the temperature above 
which the wall at z = L is completely wet by the B-rich phase. Provided the chemical 
potentials are at saturation value we expect the universal short-distance expansion for 
the concentration CA(z) of species A 

. .  

~ where ACA is the difference in the concentration of species A in the two phases, i.e. 
ACA= Cz) -Cg ' (>O) .  

Similarly if one could find a 2~ pure fluid where the liquid (I) and gas (g) phases 
wet the walls at z = 0 and z = L for T > T, and T >  Td respectively, then we expect 
thn . sm: . rn-oa l  r4nnoit . r  arnnnrinn 
,,,b U l l l l C L l Y I  "'L.0.L.' UA&,V..".U'. 

for T,> T >  T,, T.,. 
The conclusions (i) and (ii) may be extended to yield a semiquantitative theory 

for m ( z )  for arbitrary dimensionality d < 3 fo: systems with short-ranged forces. We 
assume that in the confined geometry for Tc> T 2  T,  and h =0, m ( z )  is a scaled 
function of z / L  (in the limit L+m) whose algebraic form is dominated by the 
short-distance behaviour near the wall. If for the semi-infinite wetting problem P(l)oC 
Is-' near the wall, then in the +- geometry we suppose 

This may be integrated (as in (32)) to yield 

and 

for confinement at and above the critical wetting temperature respectively. Here L ( a ,  b) 
is the normalized incomplete beta function. These approximate forms are guaranteed 
to yield the correct short-distance exponent for O<z<< L. They do not yield accurate 
corrections to leading-order behaviour; hopefully these are small. Their degree of 
success may be gauged by comparison with the explicit capillary-wave results in d = 2 
(cf (43) and (52)). Remarkably, we find that (in d = 2 )  (71) is identical to the capillary- 
wave result (43), while (72) is numerically rather close to ( 5 2 )  for all z. In fact for 
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T,> T >  T, 
I Z)beIa - ( Z)~apillary-waus ' < 0.03 

in an obvious notation. Even if the error is measured relative to m(r)'"P"'"w-"""e we 
find accuracy to better than 6%. With these observations we conclude that the beta 
function approximation is at least a good semiquantitative guide to m ( z ) .  

It is interesting to consider the behaviour of m(z)b"" for T =  T,  and T,> T >  T, 
as d + 3 - .  As this (upper critical) dimension is approached the interfacial region 
becomes strongly localized to z = L / 2 .  In fact as d + 3 -  the scaled midpoint gradient 
(m"""(L/2))' /Lmo (which is independent of L )  diverges like 

ma 

for both T = T, and Tc> T >  T,. In deriving (78) for T =  T, we have made use of 
the result 

d - 3 -  --- ( 1 + 0 ( 3 - d ) 2 ' 3 )  I - a ,  

P, 3 - d  
valid for critical wetting with short-ranged forces (David and Leibler 1990). The 
divergence of the scaled midpoint gradient is consistent with the idea (Parry and Evans 
1990b) that for both critical and complete wetting transitions the critical amplitude 
ratio //CL- (3  - d) - ' l2  as d + 3- (short-ranged forces). This provides a mechanism for 
a smooth cross-over to d = d ,  = 3 behaviour where I -  (: for continuous wetting 
transitions. 
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